Water-borne Disease Outbreaks in Canadian Small Drinking Water Systems

Sylvia Struck, PhD
BC Centres for Disease Control and the National Collaborating Centre for Environmental Health
Walkerton Clean Water Centre Fall Training, October 25, 2012
National Collaborating Centres for Public Health
Goals of all NCCs

- Synthesize and translate evidence-based knowledge
- Identify gaps in the use of evidence in public health practice and policy making
- Strengthen national profile and networking across Canada
- Consult with front-line public health practitioners to identify promising practices, policy options and research
National Collaborating Centre for Environmental Health (NCCEH)

- Focus on the health risks associated with the physical environment (natural and built) and identify evidence-based interventions to reduce those risks
- Act as a resource for environmental health practitioners and policy-makers across Canada
Major Project Areas

- Built environment
- Drinking water
- Heat advice
- Outdoor air
- Personal service establishments

Flickr. Online photo management and sharing application. Creative commons selections. Flickr; 2010; Available from: http://www.flickr.com/

S. Struck, 2012
Small Drinking Water Systems Project

- Collaborative effort among the NCCs
- The purpose is to improve small drinking water systems by identifying gaps and providing the necessary evidence to inform policy and practice
- SDWS defined as serving a population of < 5,000
- Forums, workshops and an online survey to gather input from front line practitioners, policy-makers, local drinking water officials and other experts in water safety

S. Struck, 2012
NCCEH Water-borne Events Retrospective Study

- Lack of systematic information on characteristics and causes of water-borne disease events (WBE)
- Outbreaks provide opportunity to look into sources, health impacts and contributing factors to water-borne illness
- No national surveillance system in Canada for WBE; approaches to collection of information on outbreaks are not standardized
- Information collected is often not published or distributed and often incomplete

S. Struck, 2012
NCCEH Water-borne Events Retrospective Study

Objectives of Study

- Determine the characteristics of WBEs
- Water source characteristics
- Water Treatment and distribution
- Demographic information and health outcomes

- Obtain information of direct relevance to prevention policies and programs

http://www.ncceh.ca/en/practice_policy/ncceh_reviews/dw_illnesses_surveillance

S. Struck, 2012
Retrospective WBE Study

- 1993-2008, 48 events, based on interview data with relevant front-line environmental health professionals
- Most outbreaks happened in small systems (< 5,000 population)
- Data reanalysed to focus on SDWS and combined with other studies
 - Schuster et. al. (2005)
WATER-BORNE DISEASE OUTBREAKS IN CANADIAN SMALL DRINKING WATER SYSTEMS

S. Struck, 2012
Water-borne Disease Events

- Preventable
- However limited knowledge of factors
- Investigations difficult
 - Rare
 - Can be transmitted via multiple routes
 - GI illness frequently under-reported
WBE Report Objectives

- Provide a brief overview of Canadian drinking water systems
- Describe trends of past water-borne disease outbreaks
- Describe characteristics and factors contributing to outbreaks in small drinking water systems
- Discuss practices for preventing water-borne disease outbreaks in small drinking water systems

S. Struck, 2012
Overview of Canadian DWS

- Classification
 - Ownership
 - Private
 - Semi-private
 - Public
 - Number of connections
 - Population served

- Approximately 5 million served by SDWS

S. Struck, 2012
Overview of Canadian DWS

- **Source water**
 - Majority (92%) of Canadians with *private* water supply from groundwater sources
 - Majority (85%) of Canadians with *public* water supply from surface water sources

- **Treatment practices**
 - 55% of treated water from conventional or direct filtration serving about half the population (Stats Can 2007)
 - 8.7% of drinking water systems serving communities of 300 or more do not utilize any treatment process (Stats Can 2007)

S. Struck, 2012
Recent Investigations of WBE

- Novometrix, 2009
 - 1993-2008, collected through standardized questionnaire and interviews with public health representatives
 - 48 events identified
 - Limitations: retrospective, recall bias, incomplete records, biased towards larger events?, non-response rate was 29%

S. Struck, 2012
Recent investigations of WBE

- Hrudey and Hrudey, 2004
 - In-depth case studies of water-borne disease outbreaks in Canada and industrialised countries
 - Summary of important themes and broader context of themes
Recent investigations of WBE

- Schuster et. al, 2005
 - 1974-2001, collected through outbreak summary reports (HC, Quebec), academic and grey lit
 - 288 *definite, probable, and possible* water-borne disease outbreaks
 - Greater number of events but not all maybe water-borne and less specific information about event and size of population

S. Struck, 2012
Defining WBE

- Schuster – incident in which more than 2 cases of illness occurred after ingestion from the same water source
- Novometrix – suspected or confirmed acute illness involving 2 or more and included events involving individual where clear point source
- Both Novometrix and Schuster report a high proportion of outbreaks in Quebec due to enhanced surveillance

S. Struck, 2012
“Definitely”, “probably” and “possibly” WBE from 1974 - 2001

S. Struck, 2012
Number of water-borne disease events (1993-2007)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of water-borne disease events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>5</td>
</tr>
<tr>
<td>1994</td>
<td>5</td>
</tr>
<tr>
<td>1995</td>
<td>8</td>
</tr>
<tr>
<td>1996</td>
<td>5</td>
</tr>
<tr>
<td>1997</td>
<td>2</td>
</tr>
<tr>
<td>1998</td>
<td>5</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>7</td>
</tr>
<tr>
<td>2001</td>
<td>2</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>2</td>
</tr>
<tr>
<td>2007</td>
<td>2</td>
</tr>
<tr>
<td>No date reported</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
</tr>
</tbody>
</table>

S. Struck, 2012
Distribution of WBE investigated by according to size of population served

S. Struck, 2012
Number of infectious disease outbreaks (1974-2001)

<table>
<thead>
<tr>
<th>Source</th>
<th>Public</th>
<th>Semi-public</th>
<th>Private</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitely water-borne</td>
<td>59</td>
<td>28</td>
<td>12</td>
<td>99</td>
</tr>
<tr>
<td>Probably water-borne</td>
<td>17</td>
<td>25</td>
<td>19</td>
<td>61</td>
</tr>
<tr>
<td>Possibly water-borne</td>
<td>23</td>
<td>85</td>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
<td>138</td>
<td>51</td>
<td>288</td>
</tr>
</tbody>
</table>

Distribution of infectious disease outbreaks in *public* water systems by size of population served

<table>
<thead>
<tr>
<th>Population size</th>
<th>Number of outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 – 999</td>
<td>6</td>
</tr>
<tr>
<td>1,000 – 1,999</td>
<td>15</td>
</tr>
<tr>
<td>2,000 – 2,999</td>
<td>9</td>
</tr>
<tr>
<td>3,000 – 3,999</td>
<td>7</td>
</tr>
<tr>
<td>4,000 – 5,000</td>
<td>6</td>
</tr>
<tr>
<td>5,001 or more</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
</tr>
</tbody>
</table>

50%

S. Struck, 2012
Type of water treatment by water source at time of SDWS infectious disease outbreaks

<table>
<thead>
<tr>
<th>Type of treatment</th>
<th>Groundwater</th>
<th>Surface water</th>
<th>Mixed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Disinfection only</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Disinfection and filtration</td>
<td>0</td>
<td>1*</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>14</td>
<td>2</td>
<td>31</td>
</tr>
</tbody>
</table>

*Failure of Filtration

S. Struck, 2012
Factors contributing to outbreaks

- Lack of source water protection
- Precipitation, spring thaw and high turbidity
- Inadequacy or failure of water treatment
- Malfunctioning distribution system
- Other..
Current event detection and prevention practices

- Event detection
 - Patients, physician and lab, water quality monitoring, epidemiological investigations…
- Advisories
 - Issued as response to outbreak but not always effective
- Changes to system management
 - Improvements, change water source
- Monitoring water quality

S. Struck, 2012
Monitoring program in SDWS reported by Novometrix (1993-2007)

<table>
<thead>
<tr>
<th>Water monitoring program in place?</th>
<th>Private responsibility (alone)</th>
<th>Government responsibility (alone or in combination with private)</th>
<th>Unknown responsibility</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>5</td>
<td>11</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>14</td>
<td>2</td>
<td>33</td>
</tr>
</tbody>
</table>

S. Struck, 2012
Monitoring

- System owners responsible
 - Many private owners not monitoring
 - Only 35% of HH testing drinking water (Stats Can)
 - 21% had never tested (Jones et al 2006)
 - Only 8% tested as prescribed by guidelines
 - Inconvenience, lack of problems

- Programs more likely to be implemented and maintained when governmental bodies involved
Themes of drinking water provision

- Pathogens pose greatest risk to drinking water safety
- Robust, effective, multiple barriers to drinking water contamination are needed
- Trouble is usually preceded by change
- Operators must be capable and responsive
- Drinking water professionals must be accountable to consumers
- Ensuring safety is an exercise in risk management

S. Struck, 2012
Conclusions

- Small and private drinking water systems may be more vulnerable
- Novometrix: (75%) of water-borne disease outbreaks
 SDWS
- Schuster et al., a high proportion of events occurred in SDWS classified as semi-public (48%) and private (18%) water systems
- Approximately 34% of the enteric disease outbreaks occurred in public water systems ~ 50% in systems serving populations of < 5,000 people

S. Struck, 2012
Unanswered questions

- Resistance, adaptation and tolerance to enteric pathogens
- How many water-borne outbreaks are under-reported?
- What role does public opinion play in inadequate treatment practices?
- How does the collaborative management of systems affect system operations?
Thank you!
sylvia.struck@bccdc.ca

Funded by the Public Health Agency of Canada
Where not otherwise specified, images are from flickr commons