Indoor Air Quality Assessments: Mould

Daniel Fong
National Collaborating Centre for Environmental Health
Indoor air quality workshop
CIPHI National Education Conference
Winnipeg, MB | June 23, 2013
Outline

Introduction
- What is Mould?
- Sources
- Health effects

Sampling and Interpretation
- Sampling methods
- Interpreting results (example lab reports)

Management
- Education
- Remediation - see resources
Introduction
What is Mould?

- Moulds are multi-cellular spore-forming filamentous organisms
 - Ubiquitous, outdoor and indoor
 - >100,000 reported species, few hundred are relevant to human exposure
 - Saprophytes (live off dead organic matter), parasites, symbionts

- Growth requires…
 - O_2
 - Organic carbon source
 - Temperature (ideal = 18-32°C)
 - Time
 - Moisture (e.g., RH >60%)
 - most important and only factor that can be controlled indoor

Kathie Hodge
http://www.flickr.com/photos/cornellfungi/5613739709/
Sources

- Walls, floors and ceilings, wallpaper
- Insulation, carpet,
- Furniture, mattress
- Paper, cardboard
- Food, oil
- HVAC
- Dust
- Plants
- Soil
- Other biodegradable organic materials, even in small amounts or parts of seemingly inorganic substances (e.g., residue/condensation on glass, plastics, caulking)

Concentrations are generally higher outdoor vs. indoor
Health Effects

• Irritation
 – Eyes, skin
 – Upper RT
 • Nose, throat irritation
 – Lower RT
 • Cough, wheezing, shortness of breath

• Infection (opportunistic)

• Immunological reactions
 – Asthma symptoms
 – Hypersensitivity pneumonitis (inflammation of alveoli)
 – Allergic rhinitis, sinusitis, dermatitis

Vulnerable populations:
immunocompromised (HIV/AIDS), immunosuppressed (transplant, chemotherapy patient);
those with allergies, chronic underlying respiratory disease (COPD, asthma); infants, elderly
Sampling & Interpretation
Many factors affecting the composition of mould in the air…

- Growth + distribution
- Note outdoor and indoor conditions
- A few examples…
 - Climate
 - temperature, season, time of day,
 - Aerosolization
 - Wind, rain, anthropogenic activity, turbulence
 - Indoor pets, plants, etc.
Sampling methods

- **‘Non-culturable’ (air)**
 - spore traps

- **Culturable (air)**
 - Anderson, biocassettes

- **Direct microscopic examination (qualitative)**
 - Tape, swab, bulk
Non-culturable Fungi Air Sampling

- Spore traps (e.g., air-o-cells)

- Sampled fungi (viable/non-viable) are analyzed under microscope

- Can provide...
 - ID to genus level
 - Concentration (spores/m³)
 - Genus-level comparison between samples

EMLab P&K
http://www.emlab.com/m/store/003-2022-01_Lg.jpg
Culturable Fungi Air Sampling

Andersen, biocassettes, RCS, etc.

Sampled fungi are collected onto growth media; subsequently enumerated and isolated for ID

Used for determining species and viability of fungi in the air

- Can provide...
 - ID genus + species (e.g., Aspergillus, Penicillium)
 - Concentration (CFU/m³)
 - Species-level comparison between samples

EMLab P&K
http://www.emlab.com/m/store/012-3347-00_Lg.jpg
Surface Sampling

Surface sampling (tape lift, bulk, swab)

Sampled fungi (viable/non-viable) are analyzed under microscope

Used to verify presence/absence of mould on surfaces

• Can provide...
 – relative level of mould on a surface (qualitative, genus level)
 – information on whether viable fragments or spores are present
 – information on background debris
Interpreting Results – Compare Indoor vs. Outdoor (control)

Anaylze lab results…

• ‘Expected’ moulds and levels between…
 – Suspect areas…
 • indoor air
 • surfaces
 – ‘Control’/baseline areas…
 • outdoor air
 • non-suspect areas/rooms

• Any potential indicators of indoor mould/dampness?
 – further investigation?

Do results indicate dampness + mould growth indoors?
Interpreting Results – Potential indicators

Level

* spores/m³, CFU/m³, # hyphal fragments/m³: **Indoor > outdoor**

Diversity

* Mould (genus/species) ID’ed in indoor sample are **dissimilar** to those in outdoor sample
* presence of a genus/species in indoor **but NOT** outdoor sample

Dominance

* mould that are dominant in indoor sample are **dissimilar** to those in outdoor sample
Interpreting Results – Potential indicators

These are not commonly found in indoor air:

- Rusts, smuts (plant pathogens/fungi)
- Pollen, insect parts
- Hydrophilic fungi

• Typical hydrophilic fungi
 - Stachybotrys
 - Fusarium
 - Chaetomium
 - Trichoderma
 - Ulocladium
 - Alternaria
 - Acremonium
 - Actinomycetes
 - Epicoccum
 - Rhizopus…
<table>
<thead>
<tr>
<th>Moisture level</th>
<th>Category of microorganism</th>
</tr>
</thead>
</table>
| High ($a_w > 0.90$; ERH, $> 90\%$) | Tertiary colonizers (hydrophilic)
 Alternaria alternata
 Aspergillus fumigatus
 Epicoccum spp.
 Exophiala spp.
 Fusarium moniliforme
 Mucor plumbeus
 Phoma herbarum
 Phialophora spp.
 Rhizopus spp.
 Stachybotrys chartarum (S. atra)
 Trichoderma spp.
 Ulocladium consortiale
 Rhodotorula spp.
 Sporobolomyces spp.
 Actinobacteria (or Actinomycetes) |
| Intermediate ($a_w 0.80–0.90$; ERH, $80–90\%$) | Secondary colonizers
 Aspergillus flavus
 Aspergillus versicolor
 Cladosporium cladosporioides
 Cladosporium herbarum
 Cladosporium sphaerospermum
 Mucor circinelloides
 Rhizopus oryzae |
| Low ($a_w < 0.80$; ERH, $< 80\%$) | Primary colonizers (xerophilic)
 Alternaria citri
 Aspergillus (Eurotium) amstelodami |
Interpreting Results

Toxigenic/Pathogenic mould

- Aspergillus fumigatus, A. versicolor, A. niger
- Penicillium chrysogenum
- Fusarium
- Stachybotrys
- Trichoderma
- Chaetomium…

• Presence in multiple indoor air samples may support the need for further investigation or remediation
Let’s look at some example lab reports and briefly go over them
 • Non-culturable air
 • Culturable air
 • Surface
Interpreting Results

• Results should not be interpreted in isolation.
 – Needs qualitative risk assessment
 • Information gathering + building history
 » Complainants, tenants, employees, OHS, managers, maintenance staff (building, custodial, engineer)

• Visual/Field inspection for mould growth and dampness
• Professional judgement (may involve a team)
• Assessment and remediation needs to consider individual site-specific conditions and objectives
Interpreting Results

• Consider:
 – Adequacy of other information to assess for mould growth and dampness
 • What is the need for and reasons for sampling?
 – Sampling method and protocol
 • What are the pros, cons, limitations?
 – Objective of sampling
 • What will be the use of lab results?
 • Do results indicate need for further investigation, remediation, etc.?
 • Testing cannot tell you whether human health effects will occur.
Interpreting Results

• **Visible mould** or dampness is ‘unacceptable’ from hygiene perspective
 – sample only if visual inspection unclear or suspect hidden mould (e.g., in crawlspace)

• If sampling results indicate hidden mould…
 – Is there a reasonable **exposure pathway**?
Management
Education

• Inform on…
 – health effects
 – vulnerable populations
 – potential need for professional assessment/remediation
 – preventing moisture/mould issues
Remediation

• Many resources and guidelines available
 – see additional resources
NCCEH Evidence Reviews:

<table>
<thead>
<tr>
<th>EMLab P&K</th>
<th>Mold & Bacteria Consulting Laboratories (MBL)</th>
</tr>
</thead>
</table>
| • Sampling Overview
• Sample lab reports
• An index of some commonly encountered fungal genera
• Glossary
| • Results Interpretation
 - http://www.moldbacteria.com/category/results-interpretation |
Guidelines

Books
